
Distributed Systems
23. Cryptographic Systems: An Brief Introduction

Paul Krzyzanowski

Rutgers University

Fall 2017

1November 26, 2017 © 2014-2017 Paul Krzyzanowski

Cryptography ¹ Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure

2November 26, 2017 © 2013-2016 Paul Krzyzanowski

Cryptography: what is it good for?

• Authentication
– determine origin of message

• Integrity
– verify that message has not been modified

• Nonrepudiation
– sender should not be able to falsely deny that a message was sent

• Confidentiality
– others cannot read contents of the message

3November 26, 2017 © 2013-2016 Paul Krzyzanowski

Terms

Plaintext (cleartext) message P

Encryption E(P)

Produces Ciphertext, C = E(P)

Decryption, P = D(C)

Cipher = cryptographic algorithm

4November 26, 2017 © 2013-2016 Paul Krzyzanowski

Terms: types of ciphers

• Restricted cipher

• Symmetric algorithm

• Public key algorithm

5November 26, 2017 © 2013-2016 Paul Krzyzanowski

Restricted cipher

Secret algorithm

• If you know the algorithm, you can encrypt & decrypt

• Vulnerable to:
– Leaking
– Reverse engineering

• Hard to validate its effectiveness (who will test it?)

• Not a viable approach!

6November 26, 2017 © 2013-2016 Paul Krzyzanowski

Symmetric-key algorithm
• Known algorithm but we introduce a secret parameter – the key

• Same secret key, K, for encryption & decryption

C = EK(P)

P = DK(C)

• Examples: AES, 3DES, IDEA, RC5

• Key length
– Determines number of possible keys

• DES: 56-bit key: 256 = 7.2 × 1016 keys
• AES-256: 256-bit key: 2256 = 1.1 × 1077 keys

– Brute force attack: try all keys

7November 26, 2017 © 2013-2016 Paul Krzyzanowski

The power of 2
Adding one extra bit to a key doubles the search space

Suppose it takes 1 second to search through all keys with a 20-bit key

November 26, 2017 © 2013-2016 Paul Krzyzanowski 8

key length number of keys search time

20 bits 1,048,576 1 second

21 bits 2,097,152 2 seconds

32 bits 4.3 × 109 ~ 1 hour

56 bits 7.2 × 1016 2,178 years

64 bits 1.8 × 1019 > 557,000 years

256 bits 1.2 × 1077 3.5 × 1063 years

Distributed & custom hardware efforts typically allow us to search between 1 and
>100 billion 64-bit (e.g., RC5) keys per second

Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

• Key distribution must be secret
– otherwise messages can be decrypted
– users can be impersonated

Alice

EK(P) DK(C)

Bob

9November 26, 2017 © 2013-2016 Paul Krzyzanowski

Key explosion

Each pair of users needs a separate key for secure
communication

Alice Bob

KAB

2 users: 1 key

BobAlice

KAB

Charles

KBCKAC

3 users: 3 keys

6 users: 15 keys

4 users: 6 keys

100 users: 4,950 keys

1000 users: 399,500 keys

n users: keys
2
1)(-nn

10November 26, 2017 © 2013-2016 Paul Krzyzanowski

Key distribution

Secure key distribution is the biggest problem with
symmetric cryptography

11November 26, 2017 © 2013-2016 Paul Krzyzanowski

Diffie-Hellman Key Exchange

Key distribution algorithm
– First algorithm to use public/private “keys”

– Not public key encryption

– Uses a one-way function
Based on difficulty of computing discrete logarithms in a
finite field compared with ease of calculating
exponentiation

Allows us to negotiate a secret common key without fear
of eavesdroppers

12© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

Diffie-Hellman Key Exchange
All arithmetic performed in a field of integers modulo some large number

• Both parties agree on a large prime number p and a number a < p

• Each party generates a public/private key pair

Private key for user i: Xi

Public key for user i: Yi =

13

piX moda

© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

K = (Bob’s public key) (Alice’s private key) mod p

14

pYK AX
B mod=

© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p

15

pYK BX
A mod=pYK AX

B mod=

© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob has public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice
K = K’

16

pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=
pYK AX

B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=

© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

RSA Public Key Cryptography

• Ron Rivest, Adi Shamir, Leonard Adleman created a public
key encryption algorithm in 1977

• Each user generates two keys:
– Private key (kept secret)
– Public key (can be shared with anyone)

• Algorithm based on the difficulty of factoring large numbers
– keys are functions of a pair of large (~300 digits) prime numbers

November 26, 2017 © 2013-2016 Paul Krzyzanowski 17

Public-key algorithm

Two related keys:
C = EK1(P) P = DK2(C)
C’ = EK2(P) P = DK1(C’)

Examples:
– RSA and Elliptic curve algorithms
– DSS (digital signature standard)

Key length
– Unlike symmetric cryptography, not every number is a valid key
– 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
– 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher

18

K1 is a public key
K2 is a private key

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Communication with public key algorithms

Different keys for encrypting and decrypting
– No need to worry about key distribution
– Share public keys
– Keep private keys secret

19November 26, 2017 © 2013-2016 Paul Krzyzanowski

EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

20

(Alice’s private key: Ka) (Bob’s private key: Kb)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext attacks

– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to
decrypt than AES-256

© 2013-2016 Paul Krzyzanowski 21November 26, 2017

K
EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

Communication with a hybrid cryptosystem

22

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K

November 26, 2017 © 2013-2016 Paul Krzyzanowski

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

23

EB(K) K = Db(EB(K))

November 26, 2017 © 2013-2016 Paul Krzyzanowski

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

24

EB(K) K = Db(EB(K))

DK(C’) EK(P’)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Message Authentication

November 26, 2017 © 2013-2016 Paul Krzyzanowski 25

One-way functions
• Easy to compute in one direction
• Difficult to compute in the other

Examples:
Factoring:

pq = N EASY
find p,q given N DIFFICULT

Discrete Log:
ab mod c = N EASY
find b given a, c, N DIFFICULT

“Difficult” = no known short-cuts; requires an exhaustive search

26November 26, 2017 © 2013-2016 Paul Krzyzanowski

Example

Example with an 18 digit number
A = 289407349786637777
A2 = 83756614110525308948445338203501729
Middle square, B = 110525308948445338

Given A, it is easy to compute B
Given B, it is difficult to compute A

27November 26, 2017 © 2013-2016 Paul Krzyzanowski

Message Integrity: Digital Signatures

Validate:
1. The creator (signer) of the content
2. The content has not been modified since it was signed

The content itself does not have to be encrypted

28November 26, 2017 © 2013-2016 Paul Krzyzanowski

Digital Signatures: Public Key Cryptography

Encrypting a message with a private key is the same as
signing it!

November 26, 2017 © 2013-2016 Paul Krzyzanowski 29

Ea(P) DA(C)

Trusted
directory of
public keys

Alice Bob

Encrypt message with
Alice’s private key

Decrypt message with
Bob’s public key

But…

• Not quite what we want
– We don’t want to permute or hide the content
– We just want Bob to verify that the content came from Alice

• Moreover...
– Public key cryptography is much slower than symmetric encryption
– What if Alice sent Bob a multi-GB movie?

November 26, 2017 © 2013-2016 Paul Krzyzanowski 30

Hash functions

• Cryptographic hash function (also known as a digest)
– Input: arbitrary data
– Output: fixed-length bit string

• Properties

– One-way function
• Given H=hash(M), it should be difficult to compute M, given H

– Collision resistant
• Given H=hash(M), it should be difficult to find M’, such that H=hash(M’)
• For a hash of length L, a perfect hash would take 2(L/2) attempts

– Efficient
• Computing a hash function should be computationally efficient

November 26, 2017 © 2013-2016 Paul Krzyzanowski 31

Popular hash functions

• SHA-2
– Designed by the NSA; published by NIST
– SHA-224, SHA-256, SHA-384, SHA-512

• e.g., Linux passwords used MD5 and now SHA-512

• SHA-3
– NIST standard as of 2015

• MD5
– 128 bits (not often used now since weaknesses were found)

• Hash functions deriverd from ciphers:
– Blowfish (used for password hashing in OpenBSD)
– 3DES – used for old Linux password hashes

32November 26, 2017 © 2013-2016 Paul Krzyzanowski

Digital signatures using hash functions

• You:
– Create a hash of the message
– Encrypt the hash with your private key & send it with the message

• Recipient:
– Decrypts the encrypted hash using your public key
– Computes the hash of the received message
– Compares the decrypted hash with the message hash
– If they’re the same then the message has not been modified

November 26, 2017 © 2013-2016 Paul Krzyzanowski 33

Message Authentication Codes vs. Signatures

• Message Authentication Code (MAC)
– Hash of message encrypted with a symmetric key:

An intruder will not be able to replace the hash value

• Digital Signature
– Hash of message encrypted with the owner’s private key

• Alice encrypts the hash with her private key
• Bob validates it by decrypting it with her public key & comparing with

hash(M)
– Provides non-repudiation: recipient cannot change the encrypted hash

34© 2013-2016 Paul KrzyzanowskiNovember 26, 2017

Alice Bob

Alice generates a hash of the message

Digital signatures: public key cryptography

35

H(P)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

Digital signatures: public key cryptography

36

S=Ea(H(P))

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

Digital signatures: public key cryptography

37

S=Ea(H(P))

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Digital signatures: public key cryptography

38

S=Ea(H(P))

H(P)

DA(S)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

If the hashes match, the signature is valid
– the encrypted hash must have been generated by Alice

Digital signatures: public key cryptography

39

S=Ea(H(P))

H(P)

DA(S)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P)
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P)

Digital signatures: multiple signers

40

H(P)

DA(S)

H(P)

S=Ea(H(P))

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Covert AND authenticated messaging

If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a
symmetric algorithm

– encrypt K with the public key of each recipient

– for signing, encrypt the hash of the message with
sender’s private key

November 26, 2017 © 2013-2016 Paul Krzyzanowski 41

H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key

Covert and authenticated messaging

42

S=Ea(H(M))

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

Covert and authenticated messaging

43

S=Ea(H(M))

C=EK(M)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys

Covert and authenticated messaging

44

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging

45

S=Ea(H(P))

K K
C1=EB(K)

K
C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• One-way hash functions

• Random number generators

46November 26, 2017 © 2013-2016 Paul Krzyzanowski

The end

47November 26, 2017 © 2014-2017 Paul Krzyzanowski

