Distributed Systems
23. Cryptographic Systems: An Brief Introduction

Paul Krzyzanowski
Rutgers University

Fall 2017

.

November 26, 2017 © 2014-2017 Paul Krzyzanowski

i Cryptography # Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

/ Cryptography: what is it good for?

 Authentication
— determine origin of message

* Integrity

— verify that message has not been modified

* Nonrepudiation
— sender should not be able to falsely deny that a message was sent

« Confidentiality
— others cannot read contents of the message

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Terms

Plaintext (cleartext) message P
Encryption E(P)

Produces Ciphertext, C = E(P)
Decryption, P = D(C)

Cipher = cryptographic algorithm

November 26, 2017 © 2013-2016 Paul Krzyzanowski

(Terms: types of ciphers

» Restricted cipher
« Symmetric algorithm

* Public key algorithm

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

[Restricted cipher

Secret algorithm

* |If you know the algorithm, you can encrypt & decrypt

* Vulnerable to:
— Leaking
— Reverse engineering

» Hard to validate its effectiveness (who will test it?)

* Not a viable approach!

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

Symmetric-key algorithm

Known algorithm but we introduce a secret parameter — the key

Same secret key, K, for encryption & decryption

C = Ex(P)
P = Dx(C)

Examples: AES, 3DES, IDEA, RC5

Key length
— Determines number of possible keys

« DES: 56-bit key: 2%6 = 7.2 x 1016 keys

« AES-256: 256-bit key: 226 = 1.1 x 1077 keys
— Brute force attack: try all keys

November 26, 2017 © 2013-2016 Paul Krzyzanowski

[The power of 2

Adding one extra bit to a key doubles the search space

Suppose it takes 1 second to search through all keys with a 20-bit key

key length number of keys search time

20 bits 1,048,576 1 second

21 bits 2,097,152 2 seconds

32 bits 4.3 x 109 ~ 1 hour

56 bits 7.2 x 1016 2,178 years

64 bits 1.8 x 101° > 557,000 years
256 bits 1.2 x 1077 3.5 x 1093 years

Distributed & custom hardware efforts typically allow us to search between 1 and
>100 billion 64-bit (e.g., RCS) keys per second

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski 8

Communicating with symmetric cryptography

» Both parties must agree on a secret key, K

* Message is encrypted, sent, decrypted at other side

Bob Alice

.

» Key distribution must be secret
— otherwise messages can be decrypted
— users can be impersonated

s N
Key explosion
Each pair of users needs a separate key for secure
communication
Alice Bob Alice Bob
KAB
Kac Kac
2 users: 1 key
Charles 4 users: 6 keys
3 users: 3 keys
100 users: 4,950 keys
1000 users: 399,500 keys
. n(n-1)
6 users: 15 keys 1 USETS: 9 keys
. Y,

November 26, 2017 © 2013-2016 Paul Krzyzanowski

10

-

Key distribution

.

Secure key distribution is the biggest problem with
symmetric cryptography

November 26, 2017 © 2013-2016 Paul Krzyzanowski

11

[Diffie-Hellman Key Exchange

Key distribution algorithm

— First algorithm to use public/private “keys”

— Not public key encryption

— Uses a one-way function

finite field compared with ease of calculating
exponentiation

Allows us to negotiate a secret common key without fear
of eavesdroppers

.

Based on difficulty of computing discrete logarithms in a

November 26, 2017 © 2013-2016 Paul Krzyzanowski

12

/ Diffie-Hellman Key Exchange

All arithmetic performed in a field of integers modulo some large number

« Both parties agree on a large prime number p and a number a. < p

« Each party generates a public/private key pair

Private key for user i: X

Public key for user i: Y;= ™ mod p

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski 13

/ Diffie-Hellman exponential key exchange

* Alice has secret key X, * Bob has secret key Xz
* Alice has public key Y/, * Bob has public key Yj
» Alice computes

K = (Bob’s public key) (Alice’s private key) mod p

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

14

/ Diffie-Hellman exponential key exchange

* Alice has secret key X, * Bob has secret key Xz
* Alice has public key Y/, * Bob has public key Yj
 Alice computes * Bob computes

K =Y;*modp GYAXB @

K’ = (Alice’s public key) (Bob’s private key) mod p

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

15

-

.

. Diffie-Hellman exponential key exchange
* Alice has secret key X, * Bob has secret key Xj
* Alice has public key Y, * Bob has public key Yjg
* Alice computes * Bob computes
K=Y"modp K=Y, modp
* expanding: * expanding:
K=Y;"modp K =Yz modp
= (¢’ mod p)** mod p = (&’ mod p)** mod p
= " mod p = mod p
K=K’
K Is a common key, known only to Bob and Alice

November 26, 2017 © 2013-2016 Paul Krzyzanowski

16

[RSA Public Key Cryptography

* Ron Rivest, Adi Shamir, Leonard Adleman created a public
key encryption algorithm in 1977

» Each user generates two keys:
— Private key (kept secret)
— Public key (can be shared with anyone)

 Algorithm based on the difficulty of factoring large numbers
— keys are functions of a pair of large (~300 digits) prime numbers

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski 17

-

Public-key algorithm

.

Two related keys:

—_—

C=Ex(P) P=Dy(C) | K,isapublic key
C=EwnP) P=DC) K, is a private key

—_—

Examples:
— RSA and Elliptic curve algorithms
— DSS (digital signature standard)

Key length
— Unlike symmetric cryptography, not every number is a valid key
— 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
— 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher

November 26, 2017 © 2013-2016 Paul Krzyzanowski

18

-

Communication with public key algorithms

.

Different keys for encrypting and decrypting
— No need to worry about key distribution
— Share public keys
— Keep private keys secret

November 26, 2017 © 2013-2016 Paul Krzyzanowski

19

Communication with public key algorithms

Alice

Alice’s public key: K,

Bob

(Alice’s private key: K,)

E,(P)

encrypt message with
Bob’s public key

D C) |

decrypt message with
Alice’s private key

Bob'’s public key: Kg

(Bob’s private key: K,)
D,(C)

d

@

crypt message with
Bob’s private key

EA(P)

encrypt message with
Alice’s public key

i Hybrid Cryptosystems

« Session key: randomly-generated key for one communication session
» Use a public key algorithm to send the session key

« Use a symmetric algorithm to encrypt data with the session key

4)
Public key algorithms are almost never used to encrypt messages

— MUCH slower; vulnerable to chosen-plaintext aftacks

— RSA-2048 approximately 55x slower to encrypt and 2,000x slower to
decrypt than AES-256

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski 21

[Communication with a hybrid cryptosystem

Alice Bob

< Bob’s public key: Kg

Pick a random session key, K

” 7
7) I
encrypt session key with K = Dy(Eg(K))
Bob’s public key Bob decrypts K with

his private key

Now Bob knows the secret session key, K

Communication with a hybrid cryptosystem \

Alice Bob
< Bob’s public key: Kg
Ex(K) > K=Dy(Eg(K))
=| &P | / | DO |=
encrypt message using a decrypt message using a
symmetric algorithm and symmetric algorithm and
key K key K

-

Communication with a hybrid cryptosystem

~N

Alice

m
>

Ex(P)

»
>

.

DK(C)

decrypt message using a
symmetric algorithm and
key K

Bob

Y’ Bob’s public key: Kg

> K= Dy(Eg(K))

DK(CZ

>

(Ex(P)

encrypt message using a
symmetric algorithm and
key K

.

Message Authentication

November 26, 2017 © 2013-2016 Paul Krzyzanowski

25

p
One-way functions

« Easy to compute in one direction
* Difficult to compute in the other

Examples:
Factoring:
pg =N EASY
find p,q given N DIFFICULT
Discrete Log:
a®modc=N EASY
find b given a, ¢, N DIFFICULT

.

“Difficult” = no known short-cuts; requires an exhaustive search

November 26, 2017 © 2013-2016 Paul Krzyzanowski

26

.
Example

Example with an 18 digit number

A =289407349786637777

A? = 83756614110525308948445338203501729
Middle square, B = 110525308948445338

Given A, it is easy to compute B

Given B, it is difficult to compute A

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

27

[Message Integrity: Digital Signatures

Validate:
1. The creator (signer) of the content

The content itself does not have to be encrypted

.

2. The content has not been modified since it was signed

November 26, 2017 © 2013-2016 Paul Krzyzanowski

28

/ Digital Signatures: Public Key Cryptography

Encrypting a message with a private key is the same as
signing it!

Trusted
directory of
public keys

0,
O/r%,q
Alice %oy, Bob
O 4,@}

E,(P) % , /// D4(C)

Encrypt message with Decrypt message with
Alice’s private key Bob’s public key

N

-

But...

* Not quite what we want
— We don’t want to permute or hide the content
— We just want Bob to verify that the content came from Alice

 Moreover...

— Public key cryptography is much slower than symmetric encryption
— What if Alice sent Bob a multi-GB movie?

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

30

-

Hash functions

.

» Cryptographic hash function (also known as a digest)
— Input: arbitrary data
— Qutput: fixed-length bit string

* Properties

— One-way function
» Given H=hash(M), it should be difficult to compute M, given H

— Collision resistant
» Given H=hash(M), it should be difficult to find M’, such that H=hash(M’)
« For a hash of length L, a perfect hash would take 212 attempts

— Efficient
« Computing a hash function should be computationally efficient

November 26, 2017 © 2013-2016 Paul Krzyzanowski

31

[Popular hash functions

« SHA-2
— Designed by the NSA; published by NIST
— SHA-224, SHA-256, SHA-384, SHA-512

e e.g., Linux passwords used MD5 and now SHA-512
« SHA-3
— NIST standard as of 2015

« MD5

— 128 bits (not often used now since weaknesses were found)

« Hash functions deriverd from ciphers:
— Blowfish (used for password hashing in OpenBSD)
— 3DES - used for old Linux password hashes

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

32

[Digital signatures using hash functions

* You:
— Create a hash of the message
— Encrypt the hash with your private key & send it with the message

* Recipient:
— Decrypts the encrypted hash using your public key
— Computes the hash of the received message
— Compares the decrypted hash with the message hash
— If they're the same then the message has not been modified

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

33

4)
Message Authentication Codes vs. Signatures

 Message Authentication Code (MAC)

— Hash of message encrypted with a symmetric key:
An intruder will not be able to replace the hash value

* Digital Signature

— Hash of message encrypted with the owner’s private key
* Alice encrypts the hash with her private key

« Bob validates it by decrypting it with her public key & comparing with
hash(M)

— Provides non-repudiation: recipient cannot change the encrypted hash

. J

November 26, 2017 © 2013-2016 Paul Krzyzanowski 34

-

Digital signatures: public key cryptography

.

Alice Bob

H(P)

Alice generates a hash of the message

November 26, 2017 © 2013-2016 Paul Krzyzanowski

35

-

Digital signatures: public key cryptography

.

Alice Bob

H(P)

18=Ea(H(P))

Alice encrypts the hash with her private key
This is her signature.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

36

i Digital signatures: public key cryptography

.

Alice

H(P)

Bob

lS=Ea(H(P)) | —

Alice sends Bob the message & the encrypted hash

November 26, 2017

© 2013-2016 Paul Krzyzanowski

37

/ Digital signatures: public key cryptography

Alice Bob
—| HP) __ =||"HP) —

= |S=EA(H(P) = p,s)
%////% > —

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

/. Digital signatures: public key cryptography

Alice Bob
=|HP) __ =P —
= |S=EA(H(P) = p,s)

%////% > —

If the hashes match, the signature is valid
— the encrypted hash must have been generated by Alice

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski 39

i Digital signatures: multiple signers

Charles:

« Generates a hash of the message, H(P)

« Decrypts Alice’s signature with Alice’s public key
- Validates the signature: DA(S) = H(P)

« Decrypts Bob’s signature with Bob’s public key
- Validates the signature: Dg(S) = H(P)

.

Alice Bob Charles
=|HP) _ = HP) = H(P)
— |S=EL(HP)— | = Dy® =

: . = U/ F— Da(S)
— |S=Eo(H(P) . Dy(S)

November 26, 2017 © 2013-2016 Paul Krzyzanowski

40

[Covert AND authenticated messaging

If we want to keep the message secret
— combine encryption with a digital signature

Use a session key:

— Pick a random key, K, to encrypt the message with a
symmetric algorithm

— encrypt K with the public key of each recipient

— for signing, encrypt the hash of the message with
sender’s private key

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

41

" Covert and authenticated messaging

Alice

P
L

(P)

)
S=Ea(H(M))

Alice generates a digital signature by
encrypting the message with her private key

November 26, 2017 © 2013-2016 Paul Krzyzanowski

42

" Covert and authenticated messaging

Alice

CEaM) [/

d

) N

/‘\

| ; I

S=E,(H(M))

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

November 26, 2017 © 2013-2016 Paul Krzyzanowski 43

" Covert and authenticated messaging

Alice
E C=E (|v|) /
JH(P)
— s
S=E,(H(M))
ICERTR
> 2/% for Charles
Co=E((K)

Alice encrypts the session key for each
recipient of this message using their public keys

November 26, 2017 © 2013-2016 Paul Krzyzanowski

44

i Covert and authenticated messaging

Alice Bob

| // ~~~~~~~~~~~~~~~~~~ ::S”ade;: |ice
(P) - essao %

- -
S=E_(H(P)) """F=--> Signature:f

Y
__>» Key for Bob: %

.

P
L

/r Bob
~

Charles

. W/// ——————————————
C1=EB(K) ///,7 Key for Charles: %/é%
Co=Ec(K)

The aggregate message is sent to Bob & Charles

November 26, 2017 © 2013-2016 Paul Krzyzanowski 45

i Cryptographic toolbox

« Symmetric encryption
* Public key encryption
« One-way hash functions

« Random number generators

.

November 26, 2017 © 2013-2016 Paul Krzyzanowski

46

.

The end

November 26, 2017

© 2014-2017 Paul Krzyzanowski

47

