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Cryptography ¹ Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure
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Cryptography: what is it good for?

• Authentication
– determine origin of message

• Integrity
– verify that message has not been modified

• Nonrepudiation
– sender should not be able to falsely deny that a message was sent

• Confidentiality
– others cannot read contents of the message
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Terms

Plaintext (cleartext) message P

Encryption E(P)

Produces Ciphertext, C = E(P)

Decryption, P = D(C)

Cipher = cryptographic algorithm
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Terms: types of ciphers

• Restricted cipher

• Symmetric algorithm

• Public key algorithm
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Restricted cipher

Secret algorithm

• If you know the algorithm, you can encrypt & decrypt

• Vulnerable to:
– Leaking
– Reverse engineering

• Hard to validate its effectiveness (who will test it?)

• Not a viable approach!
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Symmetric-key algorithm
• Known algorithm but we introduce a secret parameter – the key

• Same secret key, K, for encryption & decryption

C = EK(P)

P = DK(C)

• Examples: AES, 3DES, IDEA, RC5

• Key length
– Determines number of possible keys

• DES: 56-bit key: 256 = 7.2 × 1016 keys
• AES-256: 256-bit key: 2256 = 1.1 × 1077 keys

– Brute force attack: try all keys
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The power of 2
Adding one extra bit to a key doubles the search space

Suppose it takes 1 second to search through all keys with a 20-bit key
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key length number of keys search time

20 bits 1,048,576 1 second

21 bits 2,097,152 2 seconds

32 bits 4.3 × 109 ~ 1 hour

56 bits 7.2 × 1016 2,178 years

64 bits 1.8 × 1019 > 557,000 years

256 bits 1.2 × 1077 3.5 × 1063 years

Distributed & custom hardware efforts typically allow us to search between 1 and 
>100 billion 64-bit (e.g., RC5) keys per second  



Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

• Key distribution must be secret
– otherwise messages can be decrypted
– users can be impersonated

Alice

EK(P) DK(C)

Bob
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Key explosion

Each pair of users needs a separate key for secure 
communication

Alice Bob

KAB

2 users: 1 key

BobAlice

KAB

Charles

KBCKAC

3 users: 3 keys

6 users: 15 keys

4 users: 6 keys

100 users: 4,950 keys

1000 users: 399,500 keys

n users:                  keys 
2
1)( -nn
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Key distribution

Secure key distribution is the biggest problem with 
symmetric cryptography
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Diffie-Hellman Key Exchange

Key distribution algorithm
– First algorithm to use public/private “keys”

– Not public key encryption

– Uses a one-way function
Based on difficulty of computing discrete logarithms in a 
finite field compared with ease of calculating 
exponentiation

Allows us to negotiate a secret common key without fear 
of eavesdroppers
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Diffie-Hellman Key Exchange
All arithmetic performed in a field of integers modulo some large number

• Both parties agree on a large prime number p and a number a < p

• Each party generates a public/private key pair

Private key for user i:  Xi

Public key for user i:  Yi =

13

piX moda
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

K = (Bob’s public key) (Alice’s private key) mod p
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pYK AX
B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p
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pYK BX
A mod=pYK AX

B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice has public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob has public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice
K = K’
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pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=
pYK AX

B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=
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RSA Public Key Cryptography

• Ron Rivest, Adi Shamir, Leonard Adleman created a public 
key encryption algorithm in 1977

• Each user generates two keys:
– Private key (kept secret)
– Public key (can be shared with anyone)

• Algorithm based on the difficulty of factoring large numbers
– keys are functions of a pair of large (~300 digits) prime numbers
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Public-key algorithm

Two related keys:
C = EK1(P) P = DK2(C)
C’ = EK2(P) P = DK1(C’)

Examples:
– RSA and Elliptic curve algorithms 
– DSS (digital signature standard)

Key length
– Unlike symmetric cryptography, not every number is a valid key
– 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
– 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher
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K1 is a public key
K2 is a private key
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Communication with public key algorithms

Different keys for encrypting and decrypting
– No need to worry about key distribution
– Share public keys
– Keep private keys secret
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EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms
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(Alice’s private key: Ka) (Bob’s private key: Kb)
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Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext attacks

– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to 
decrypt than AES-256
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K
EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

Communication with a hybrid cryptosystem

22

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K
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EK(P) DK(C)

Alice Bob

Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

23

EB(K) K = Db(EB(K))
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EK(P) DK(C)

Alice Bob

Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem
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EB(K) K = Db(EB(K))

DK(C’) EK(P’)
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Message Authentication
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One-way functions
• Easy to compute in one direction
• Difficult to compute in the other

Examples:
Factoring:

pq = N EASY
find p,q given N DIFFICULT

Discrete Log:
ab mod c = N EASY
find b given a, c, N DIFFICULT

“Difficult” = no known short-cuts; requires an exhaustive search
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Example

Example with an 18 digit number
A = 289407349786637777
A2 = 83756614110525308948445338203501729
Middle square, B = 110525308948445338

Given A, it is easy to compute B
Given B, it is difficult to compute A
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Message Integrity: Digital Signatures

Validate: 
1. The creator (signer) of the content
2. The content has not been modified since it was signed

The content itself does not have to be encrypted
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Digital Signatures: Public Key Cryptography

Encrypting a message with a private key is the same as 
signing it!
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Ea(P) DA(C)

Trusted 
directory of 
public keys

Alice Bob

Encrypt message with
Alice’s private key

Decrypt message with
Bob’s public key



But…

• Not quite what we want
– We don’t want to permute or hide the content
– We just want Bob to verify that the content came from Alice

• Moreover...
– Public key cryptography is much slower than symmetric encryption
– What if Alice sent Bob a multi-GB movie?
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Hash functions

• Cryptographic hash function (also known as a digest)
– Input: arbitrary data
– Output: fixed-length bit string

• Properties

– One-way function
• Given H=hash(M), it should be difficult to compute M, given H

– Collision resistant
• Given H=hash(M), it should be difficult to find M’, such that H=hash(M’)
• For a hash of length L, a perfect hash would take 2(L/2) attempts

– Efficient
• Computing a hash function should be computationally efficient
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Popular hash functions

• SHA-2
– Designed by the NSA; published by NIST 
– SHA-224, SHA-256, SHA-384, SHA-512

• e.g., Linux passwords used MD5 and now SHA-512

• SHA-3
– NIST standard as of 2015

• MD5
– 128 bits (not often used now since weaknesses were found)

• Hash functions deriverd from ciphers:
– Blowfish (used for password hashing in OpenBSD)
– 3DES – used for old Linux password hashes
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Digital signatures using hash functions

• You:
– Create a hash of the message
– Encrypt the hash with your private key & send it with the message

• Recipient:
– Decrypts the encrypted hash using your public key
– Computes the hash of the received message
– Compares the decrypted hash with the message hash
– If they’re the same then the message has not been modified
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Message Authentication Codes vs. Signatures

• Message Authentication Code (MAC)
– Hash of message encrypted with a symmetric key:

An intruder will not be able to replace the hash value

• Digital Signature
– Hash of message encrypted with the owner’s private key

• Alice encrypts the hash with her private key
• Bob validates it by decrypting it with her public key & comparing with 

hash(M)
– Provides non-repudiation: recipient cannot change the encrypted hash
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Alice Bob

Alice generates a hash of the message

Digital signatures: public key cryptography

35

H(P)
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H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

Digital signatures: public key cryptography
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S=Ea(H(P))
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H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

Digital signatures: public key cryptography
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S=Ea(H(P))
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H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Digital signatures: public key cryptography
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S=Ea(H(P))

H(P)

DA(S)
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H(P)

Alice Bob

If the hashes match, the signature is valid
– the encrypted hash must have been generated by Alice

Digital signatures: public key cryptography

39

S=Ea(H(P))

H(P)

DA(S)
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Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P) 
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P) 

Digital signatures: multiple signers

40

H(P)

DA(S)

H(P)

S=Ea(H(P))

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)
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Covert AND authenticated messaging

If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a 
symmetric algorithm

– encrypt K with the public key of each recipient

– for signing, encrypt the hash of the message with 
sender’s private key
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H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key

Covert and authenticated messaging
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S=Ea(H(M))
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H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

Covert and authenticated messaging
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S=Ea(H(M))

C=EK(M)
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H(P)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys

Covert and authenticated messaging
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S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)
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H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging
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S=Ea(H(P))

K K
C1=EB(K)

K
C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles
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Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• One-way hash functions

• Random number generators
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The end
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